Monte Carlo tree search for materials design and discovery

Materials design and discovery can be represented as selecting the optimal structure from a space of candidates that optimizes a target property. Since the number of candidates can be exponentially proportional to the structure determination variables, the optimal structure must be obtained efficiently. Recently, inspired by its success in the Go computer game, several approaches have applied Monte Carlo tree search (MCTS) to solve optimization problems in natural sciences including materials science. In this paper, we briefly reviewed applications of MCTS in materials design and discovery, and analyzed its future potential.

収録
MRS Communications, 9, 532-536
Avatar
Thaer M. Dieb
Post-Doc Researcher (NIMS)